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ABSTRACT

The paper describes a program for the minimization of multi-output
three-level Boolean networks from NAND gates of unlimited fan-in. This
model suits very well several recently introduced PLD devices, for instance
the "NAND Foldback Architecture” PLHS501 and PLHSS502 chips from Sig-
netics Corp. In our model the function is multi-output, and it includes don’t
cares. The presented algorithm is fast and creates good-quality approximate
solutions, its efficiency increases with the percentage of don’t cares.

1. THE NAND FOLDBACK PLD ARCHITECTURES

The PLD devices have been recently introduced that allow to design systems with
lower component counts and higher operating speeds {32]. For most of Boolean functions,
these new PML (Programmable Macro Logic) architectures can improve gate utilization and
timing, as compared to the previous generations of PLD devices. The PLHS501 from Sig-
netics Corporation provides NAND-folded array design - a sea of NAND gates with a
multi-point connectivity matrix. The single array allows for the full connectivity of inputs,
outputs and embedded macro functions, making possible full gate utilization and embedded
multi-level block designs. It has 72 NAND gates with 72 inputs each, which means that an
unlimited fan-in can be assumed by the synthesis algorithm.

The PLHSS501 device has 24 dedicated inputs, 8 /O buffers, 8 EXOR buffers, 4
Active-Low buffers, and 4 Active-High buffers. It can be observed that in this device a
single-level logic function has a very short path through the device, 18nS max [31]. Addi-
tional levels incur only one NAND foldback delay per level, which is 8 nS. The two-level
circuit has then 18 + 8 = 26 nS delay only, which is much beuter than in the previous genera-
tion of devices which stipulated that the logic signal must pass through /O buffers after one
or two levels of logic are performed (31).

2. THE TLN NETWORK MODEL

‘When one realizes the circuits composed of several connected blocks (as, for instance,
the iterative circuits) in PLHS501, some inputs to the blocks come directly from the chip’s
inputs (the so called direct inputs). The PLHS501 has both negative and positive inputs,
which can be used as the direct inputs. The feedback signals coming from the internal
NAND gates of PLHS501 have no negations. Therefore, while designing a single logic block
10 be realized among other blocks in a PLHS501 device, these signals (like for instance the
carry signals of an iterative circuit) have to be treated in logic minimization procedure as
input variables available in only affimative form [26). In [19,26] we presented a circuit
model for incompletely specified Boolean functions where any subset of input variables is
available in both forms (in particular cases: all variables or none of them). It results from the
above discussion that the variable availability model from [19,26] is the most general one for
PLHS501.

The advantage of Three level networks (TLN) is that the TLN design for function f can
never have more gates than the corresponding PLA. Usually, the TLN design has two
advantages: it has much less gates and is faster. These are the main reasons why there has
been recently an increased interest in such networks. Three level networks are important
from the speed optimization point of view, since three levels is the minimum number of logic
levels necessary to realize an arbitrary logic function from inclusive gates (even PLA has
three levels, including inverters). The algorithms for hazardless synthesis of TLN networks
which have been also proposed [25] makes them useful for the design of asynchronous state
machines. Moreover, one can easily expand this model to take into account the "fast” (arriv-
ing quickly) and "slow” (arriving late) combinational input signals of a state machine, by
assigning the slow inputs to the second level of the TLN circuit {25]. In the TLN model, the
one-level (such as OR of negated variables), and two-level functions (such as a positive
unate function) need only one or two levels of logic, respectively, which makes their realiza-
tions faster than in PLAs.

TLN networks [26] are the generalizations of the Three level And-Not Networks with
True inputs (TANT) of McCluskey and Gimpel [15,9]. Several algorithms to minimize
TANT networks have been published (4,5,15,14,11,33,34], and some algorithms have been
implemented as computer programs [9,12,8,18,26]. A closely related topic of negative gate
network minimization is presented in [19,20).

Other advantage of TLN networks is that they can be designed in VLSI: using one,
two or three NAND-arrays (some of them possibly folded), or using a NAND array and a
standard NAND/NAND PLA-like pair of arrays. Each NAND array is of better density than
the NAND/NAND array of the two-level designs. The routing among the arrays is
simplified. In the case of TANT networks (as well as for the "single-polarity” TLN networks
where each variable is available as either positive or complemented but not in both (241), the

number of input columns of an amray is reduced by half with respect 10 a PLA (only one
column exists for each input variable). Other advaniage of such layout style is the ease of
adding EXOR logic to the NAND array for improved testability.

3. BASIC NOTIONS OF APPROXIMATE MULTIOUTPUT TANT MINIMIZATION

The Algorithm 5.1, presented in section 5 of this paper deals with a multioutput,
incompletely specified function in which all input variables are available in affirmative (posi-
tive) form. The cost to be minimized is the gate cost. This cost definition speeds-up this
algorithm with respect to the algorithms which use gate/input costs [26,24] and it is sufficient
for the fan-in model of PLHS501-like circuits. The improved speed of this algorithm with
respect to the previous algorithms was achieved due to the of unlimited fan-in of
all NAND gates, and due to the speed of modem two-level logic symhcsuers

The fast approximate algorithm for the general, all-variable availability model is quite
complex. Its basic notions and partial algorithms have been presented in (26,19,20], and will
appear in the forthcoming papers [23,24,25]. Therefore, because of the limited space, only
the case of the multi-output incompletely specified functions with only positive variables
available will be discussed in this paper. One of the methods to expand the model presented
here is to introduce a new variable symbol for a negation of each variable available in the
complemented form [34). In the most difficult case when all variables are available in both
forms, this method doubles the number of input variables, but does not require otherwise any
other modifications to the algorithms presented in the sequel. Two other methods for the
general case are presented in [26,23,24]: the complex but more efficient, and the exact
method.

The source data, multioutput Boolean function f= (f!, ... ,f,...f™) is given as a mul-
tioutput ON array (specifying ON-cubes of all single component (output) functions f', i= 1,

., m), and a multiowput OFF array (specifying OFF-cubes of all these functions). Each
cube has n+m bits, the first n bits (b, € {0, 1, X, €}) is the input part, the last m bits
(bi € {0, 1)) is the ousput part [8). By ON(/*) we will denote the set of all such cubes j for
which ON[j,n+i] = 1. Similar notation will be used for other sets of multioutput cubes and
subfunctions. The cubes need not 0 be the minterms. The program assumes that all not
specified values are don’t cares. Such representation has advantages for strongly unspecified
functions.

4. CATEGORIES OF IMPLICANTS FOR TANT NETWORK MINIMIZATION

The following example will illustrate how TANT optimization leads to network reduc-

tion.
Example 4.1. The function f = ¥(0,1,2,4,5,6,12,14) can be minimized as the following
Boolean expression: f=ac+ad+b d. Its NAND-based PLA realization (so called
PLA-expression ) has gate cost 7. The corresponding optimal expression for TANT net-
work is f = a@ c¢d + b d , which has one gate less than the previous realization.

One can observe from the above example, that in TANT networks the first level real-
izes a logical sum, the second realizes a product and the third one the negation of the vari-
ables’ product. TANT network minimization problem consists of finding the Boolean
expression that minimizes the total cost. It means that the synthesis method should minimize
simultaneously the second and third levels.

Definition 4.1. The positive core (core, for short) of a product of literals is the product of
those literals which are positive. _

Example 4.2. The positive core of abc d is ab.

The core is a cube, so that definitions of cube calculus operations [1,2,6,10,27,28], such as
sharp (#), absorption, and intersection are applicable to it.

Definition _4.2. _A permissible expression is a Boolean expression of form
P=HT,T; -~ T, where both # and T; are positive cores. H is called the head of per-
missible expression and each T; is called a tail core while each T; is called a tail factor.
Definition 4.3, A permissible impli (PP-impli ) of function f is a permissible
expression which implies f (i.e. covers a subset of ON cubes of f).

Example 4.3. A Boolean expression b d d is the prime implicant (prime, for short) of the
function from Example4.1,andb d, b bd, b ad T, Z, b ad cd are some of PP-implicants of this
function.

Definition 4.4. A head of a PP-implicant of function f is called the second level group. A
tail core of a PP-implicant is called the third level group.

Example 4.4. For the TANT network of the function f from Example 4.1, products b, and 1
are the second level groups, while products a, b, and cd are the third level groups. 1 is the
head of the PP-implicant a<¢.

Definition 4.5. A permissible r for fi fisthe i sum of the set of
PP-implicants which cover all ON cubes of the function. An optimal permissible realiza-

360

CH2909-0/90/0000/0360$01.00 © 1990 IEEE



tion for function f, denoted by OPR (f), is such a permissible realization that its correspond-
ing TANT network has the minimum total cost.
Definition 4.6. A prime permissible implicant, pp-implicant for short, is a permissible
implicant that:
- is not included in a prime implicant,
- if a tail factor is removed from it then the resulting expression is no longer a PP-
implicant.
The set of all pp/-implicants is denoted by PP.
Example 4.5. For function f from Example 4.1:
PP, = (ag, ad a:d bd bzzcd bndcd
b bd, b ab cd, b bed, b abd cd, b ad bed, b abd bed) .
Definition 4.7. A principal PP-implicant, pc,-implicant for short, is such a pp-implicant
that its tail cores do not contain variables from its head. The set of all pc-implicants is
denoted by PC.
Example 4.6. For function f from Example 4.1:
PCy=(ac, ad, acd bd bar:d badcd)
Deﬁnmon 48. A imal pc-implicant, mp~impli for short, is such a pc -implicant
that is not mcluded m other pc,—xmphcams The set of all mp,—unphcan:s is denoted by M.
The imal of a mul ion is the i of its com-
ponent function f*, or the maximal implicant of a product of component functions.
Theorem 4.1. The tail cores of a mp-implicant are included in all the tail cores of pcy-
implicants included in this mp~implicant. o
Example 4.7. For function f from Example 4.1: M, = (@ cd, b ad cd).
‘The tail cores ad and cd of a mp -impli b ad cd are included inmetailcoredchhepc,-
implicant & 4. They are also mcluded in lhe tail cores g and cd of b @ cd.
Definition 4.9. An aug ap~impli for short, is such a pps-
implicant that it is not a pc,-:mphcam_ The set of all ap-implicants is denoted by APy.
Example 4.8. For function f from Example 4.1:
AP = (b bd, bab cd, b bed, babbcd babdcd badbca‘ b abd bed}.
Definition 4.10. A apy i for short, is such a ap-
implicant that all of its tail faclors can be shared by mher ppimplicants of a different head.
The set of all nas-implicants is denoted by NA;. An unnecessary ap-implicant is the ap/~
implicant which is not an na-implicant. It is called an una-implicant.
Theorem 4.2, If the una-implicant is not selected to an exact OPR(f) then at least one
optimal solution is not lost.
Example 4.9. For function f from Example 4.1 NA, ¢
Deﬁmtion 4.11. A Y PPy plii for short, is such a pps-
i that is not a unas-i The set of all np,—unpllcams is denoted by N
From Definitions 4.6, 4.7, 4.9, 4.10 and 4.11 one can conclude that Ny =PCr(j NA,.
Example 4.10. For function f from Example 4.1: Ny = PC;.
The next theorem results dn'ecdy from the Boolean Rule: A B = A AB and the definitions of
licants and nay
Theorem 4.3. Every app-impi can be g
tain variables contained in its head to a subset of its tail cores.
Theorem 4.4. The positive cores of all prime implicants of function f are sufficient as the
heads of the pp,-unphcams
Example 4.11. The prime implicants of function f from Example 4.1 are: {a ¢, @ 4, bd.
The positive cores of these implicants are {1, b} which are the heads of the pp-implicants
from Example 4.5.
Theorem 4.5. The positive cores of all prime implicants of function  (the complement of
function f) are sufficient as tail cores of the mp~implicants of f.
Example 4.12. Prime impli of the 1 of fi f from Example 4.1 are
(a b, ad, cd}. The positive cores of these implicants are (a, ad, cd} which are tail cores of
the mp~implicants from Example 4.7.
Definition 4.12. An essential prime implicant of single-output function f is the prime that
is not entirely covered by other primes of f. An essential maximal implicant of a com-
ponent function f* is the maximal implicant that is not entirely covered by other maximal
implicants of this function. An essential implicant of a multioutput function f is the essen-
tial implicant of at least one of its component functions £*.
Definition 4.13. A positive implicant of f is the product of positive variables that is an
implicant of f. A positive prime implicant is the prime implicant that is composed of only
positive variables. An essential positive implicant is the essential prime implicant that is a
positive implicant as well.
Definition 4.14. An essential tail core is the smgle-va.nable tail core from an essential max-
imal implicant of positive core 1.
Definition 4.15. An 1 necessary implicant is either the
whose all tail cores are essential, or the positive essential implicant.

Lct us obscrve that in order to minimize the second level of TANT network the essen-
tial it should be selected. First an I prime is found and in the next
phase several implicants are generated with the positive core of this implicant as their head,
and one or more of them are included to a solution. Then, in a sense, only its head is essen-
tial. We will call it an essential head. On the contrary, the essential necessary implicant of
a single-output function or component function f* should be directly selected to the solution
because no other better necessary implicant can be created from it. Let us also observe that,
in function f, an ial positive implicant of a function f* can be useful as a
taif core or an implicant in other £ of the same function £, j #i. There-
fore, an already selected group can be used free for other applications (this can lead to solu-
tions of nonminimal input cost but this is not a concem of our circuit model).

‘When one wants to find the minimum solution for the multioutput function, maximal impli-
cants must be generated that are maximal not only for each individual j‘ but also for pro-
ducts of several f* (so-called multioutput maximal implicants). This is done by finding

from a PP-impli

by addition of cer-

1 maximal impli

products of maximal implicants of the same head generated for each £ If |, for instance,
there are maximal implicants m,, m,, and m in functions f*, f2, and f°, respectively, then
one creates products: my & my, my & ms, my & m3, my & my & my. These multioutput
maximal implicants are used for realization in the second phase of the algorithm.

Definition 4.16. A free tail core of f is one that has been already selected as a positive
implicant or as a tail core in one of the component functions f*.

Let us observe that free tail cores don't increase the solution cost when taken as tail cores of
new implicants selected to the cover.

By "sharping" function g from function f we d the result of op f#s.
Definition 4.17. A secondary essential prime is the prime thar becomes essential after
sharping from set ON of an essential or secondary essential prime. A secondary essential
maximal implicant is the maximal imp that b ial after sharping from set
ON of an essential or secondary essential maximal implicant.

Definition 4.18. A minimal minterm of cube HEAD is the cube obtained from HEAD by
replacing all its bits X by bits 0.

Definition 4.19. The simple extension HEAD1 of core HEAD in f* is the core that ori-
ginates from HEAD by the removal of a single variable, under condition that the minimal
minterm of HEAD is not included in OFF(f*).

(A core of k literals has from 0 o k simple extensions).

Definition 4.20. The extension of core HEAD is the simple extension or the extension of a
simple extension. A maximum extension is the extension that has no further simple exten-
sion.

All implicants and tail cores are catled subfunctions.

5. THE ALGORITHM FOR FINDING QUASIMINIMAL TANT SOLUTION

In order to find the optimum OPR(f) from the set of the np-implicants, the covering
problem with changing costs is used in {26]. Most other approaches use variants of the
covering-closure model [33,34,9]. Since both those approaches are memory and time con-
suming for TLN networks, in this paper we will present a heuristic search algorithm that
does not all the npy-impli and solves the covering/closure problem only
approximately and without creating the covering/closure table. It can, however, prove
optimality for a class of Boolean functions that essentially includes the class of non-cyclic
functions [28]. The basic idea of this algorithm is to find the essential and "good" subfunc-
tions of some f* and next use them, or their tail factors, in all component functions f in
which they are useful.

The following theorems can be proven,
Theorem 5.1. If a single-output is
its maximal implicants are essential as well.
The opposite is not true, as exemplified by the function f= 3(1,3,6,7,8,9,12,14). It has no
essential primes since it is a cyclic function. It includes, however, three essential maximal
implicants: d bd acd, bc acd, and a bd ag, which together constitute the minimum secona
level cover of f. The above function is cyclic, but not TANT-cyclic. The function
f=3%.0,1,5,6,7,10,14,15) is both cyclic and TANT-cyclic.

Theorem 5.2. Algorithm 5.1 finds the muumum second level solutmn for mch smgle-
output function that is composed from 1 and d:

only. If additionally the tail cores are all essential then the solution is globally mlmmum

Even if the function has a TANT-cyclic component, the minimal d-1 of
the not TANT-cyclic component is found.

The minimum second level solution is one that has the minimum possible number of gates in
the second level. It was found practically to be very close to the global minimum for many
single-output functions of less than 10 variables {5,24].

It results from these theorems that without solving the covering problem the minimal second
level solutions can be found for a wider class of functions in the TANT model than in the
PLA model.

Algorithm 5 1.

Minimization of a multioutput TANT network.

1. Using sets of cubes ON and OFF, generate the set ESSENTIAL of all essential prime
cubes of f (the efficient algorithm from {22] is used that generates the essential primes
without generating the set of primes of f).

2. Using sets of cubes ON, OFF, and ESSENTIAL, generate the set ESSENTIAL2 of all
secondary essential prime cubes of f (the efficient algorithm from [22] is used that
generates the secondary essential primes without generating all primes),

ESSENTIAL := ESSENTIAL _ ESSENTIAL2. ON1 :=ON.

4. Create set ESSENTIAL3 by partitioning set ESSENTIAL into groups of essential
primes, by assigning to each group the essential primes with the same positive core.

5. Make set ESSENTIALA of essential by sel from set
ESSENTIALS3 the positive implicants and the 1mphcant of positive core 1 being the
single element of a group.

6. Realization of essential tail cores and FREE_TAIL_CORES.

A. ESSENTIAL_TAIL_CORES := { the tail cores being negations of the tail fac-
tors from ESSENTIALA }.
FREE_TAIL_CORES := { set of those implicants from ESSENTIAL3 that are
positive }.
B. For ecach 1l core G from ESSENTIAL_TAIL_CORES
FREE_TAIL_CORES, and all ,i = 1,....m, do:
a)  if G isan implicant of f* then realize it as an implicant of £ (by the reali-
zation of implicant G in function f* one means: )
SOLUTION(f) := SOLUTION(f) \y G, ONI(f") :=

P

d of only then all

P

ON(f) # G).



12.

13.

14.
15.

16.

function

(SOLUTION(F") is the set of impli lected for
#'. SOLUTION = (SOLUTION(f'), ..., SOLUTION(/™).
if for a component funcuon/‘ there is: ONl(f‘) cGand OFF(f%) ) G=
¢ then realize the entire f* as G. (steps a), b) can be performed since these
tail cores G do not add gate cost when used).

Realization of ial y implicants. Sharp the essential necessary implicants
found in step 5 from the function and put them to the solution sets of f* in which they
exist:

ONI1 := ON1 # ESSENTIALA, SOLUTION := ESSENTIAL4.

Create the set ESSENTIAL_HEADS from the positive cores of all the groups from the
set ESSENTIAL3 — ESSENTIALA. _

ON2:=OFF, OFF2:=0N1. Find a single SOP of function f.

Find set TAIL_CORES of positive cores of the primes from this SOP.

b)

Realization of Py . .

of P
For each HEAD from ESSENTIAL_HEADS do:

A.  for each component function f* for which there is an implicant of head HEAD
do:

a)  create a maximal implicant MAX(f") of head HEAD, using the algorithm
from [32]. This algorithm selects tail cores from the sets TAIL_CORES,
ESSENTIAL_TAIL_CORES, and FREE_TAIL_CORES, in this order of
priority.

b)  Mark in SOLUTION3 the component functions f in which MAX (f) is
an implicant: MAX (f*) ~ ON1(f") #¢ and MAX (f) ~ OFF(f")
=¢.

¢)  Sharp MAX(/") from all ON1(f/) sets of all component functions f/ in
which it is an implicant.

d) FREE_TAIL_CORESI := (tail cores from MAX(f")}.

e) realize the cores from FREE_TAIL_CORES] analogously as the essential
tail cores were realized in step 6B.

f) FREE_TAIL_CORES = FREE_TAIL_CORES ]

FREE_TAIL_CORESI.
Checking the solution. If ON1 = ¢ then do:

A.  SOLUTION3 := SOLUTION () ESSENTIAL_MAX is the minimal second-
level solution,
B. gotolé.
Realization of dary . imal implicants.
A, Usmg |he algomhm from [24] and sets ON1, OFF create the set ESSENTIALS
Y maximal impli New tail factors are realized as in
1 1Ac),d), e).
B. ONI1:=0N1 # ESSENTIALS,
SOLUTION2 := SOLUTION | ; ESSENTIALS.
C.  Checking the solution. If ON1 = ¢ then do:
a)  SOLUTIONS3 := SOLUTION? is the minimal second-level solution,
b) gotol6.

else ADDITIONAL_TAIL_CORES := ¢.
ON3 := ON1. SOLUTIONS := ¢ ; cyclic part of solution
Heuristic Search of maximal implicants.
A. Find in ON3 the cube cube, that has firstly the minimum number of bits "1" in
the input part of the cube and secondly the maximum number of bits "1" in the
output part of the cube. If there are many such cubes, pick randomly any of
them.
Find its positive core HEAD. HEADS := (HEAD}.
For each component function f* in which the minimal minterm
MINIMAL(HEAD) for the HEAD is not included in OFF(f*), do:
a)  Find the set HEADS(f") of all heads being the maximum extensions of

HEAD. For each of those heads, mark the functions f* in which it exist.

b)  HEADS :=HEADS {_ HEADS(f).

For all heads HEAD]1 from set HEADS do:

a)  Generate the maximal implicant MAX of head HEAD1 and negations of
some tail cores as the tail factors [26]: the tail cores from sets
ESSENTIAL_TAIL_CORES, and FREE_TAIL_CORES have the priority
in the tail core selection process, the cores from TAIL_CORES, and
ADDITIONAL_TAIL_CORES are selected in the next order.
SOLUTION3 := SOLUTION3 ) MAX.

Execute for MAX, ON3, and SOLUTION3 the algorithm described in
steps 11A b) - e) for MAX(f"), ON1, and SOLUTION.

E. IfON3=#¢thengotoA.

SOLUTION4 := SOLUTION2 {y SOLUTION3.

If the function is single-output and all implicants in set SOLUTION4 have only the
essential heads in the second level and the essential tail cores and positive essential
implicants as the third level groups then print SOLUTION4 as the globally minimal
one, and terminate.

D.

b)
<)

17.  Improvement of the.third level for the second level cover realized in steps 6 - 15.

A. For each maximal implicant from SOLUTION4 create a set of possible tail
cores from TAIL_CORES with which this implicant can be realized. These are
the tail cores of the implicants from SOLUTION3, and their augmented cores.

B.  Create a covering table with I impli as coll and tail cores as
Tows.

C.  Solve the covering problem to minimize the number of tail cores. Give priority
to the cores in this order: ESSENTIAL_TAIL_CORES, FREE_TAIL_CORES,
ADDITIONAL_TAIL_CORES. Additionally, the ion of the mini
bound on the third level is found at this stage {24,19].

18.  lterative improvement of the TANT-cyclic part of the solution without reshaping the

ON and OFF sets.

A. ADDITIONAL_TAIL_CORES := { set of tail cores created from the rated cores
of the "best” implicants from all solutions found until now, and the cores being
their intersections }. (For instance, cores abcd and acde produce a new core
acd).

B.  Repeat three times the steps 14 - 18A. In step 15 Ca), the multioutput maximal
implicants are created, as explained in secuon 4. Also, instead of the maximum
extensions of heads, the ex that imize the " cost” [26] of
the created necessary implicants are taken (the search mvnlves now not only the
maximal implicants but also the necessary implicants).

19. If no improvement of solution cost was achieved in step 18
then print the SOLUTION4, the global minimum bound, and terminate.

20. [lterative improvement of the solution with reshaping the ON and OFF sets and recal-
culating implicants.

A.  reshape cubes in sets ON and OFF,

B.  ADDITIONAL_TAIL_CORES := ADDITIONAL_TAIL_CORES | { set of

positive cores of prime implicants of a SOP of £ }.

C.  ON3:=ON, SOLUTION2 := ¢, SOLUTION3 := ¢.
D.  Execute steps 14-19, using in step 14 the set ON instead of the set ON1.
E.  If no improvement of solution cost was achieved in step D

then print the SOLUTION4, the global

Else go to 20.
Exampie 5.1. For function f= ¥,0,2,4,5,6,7,12,13,14) the essential primes of core b are
bc, baand b 3._’1'he essential primes of core 1 is @ d. After sharping the essential neces-
sary implicant a d (it is necessary as being a single essential prime of head 1), the only head
remaining is b. Head b overlaps the positive core acd of prime implicant acd of f. The essen-
tial maximal implicant b acd is created (the implicants like b €, b a, and b d of head b are
not maximal). After sha{plng it from set ON, the set ON becomes empty. Therefore, the
solution obtained, f = @ d + b acd, has the minimum number of gates in the second level.
The tail cores a, 4 are essential, since they come from an essential prime implicant of head 1.
The tail core acd is also essential, since at least one tail core, other than ¢ and 4, is needed to
realize the essential prime bc, which is included in the maximal implicant of head b. The
third level cover is then minimal as well. The solution is minimal on both levels, and since
the function is single-output it is globally minimal.
Example 5.2. For function f = ¥1(0,1,3,4,5,6,9,10,11,12,14,15), the essential primes are:
ac,acb 3, d b. The essential necessary implicants are: @ ¢ and a ¢. Tail cores a and ¢ are
essential as coming from an essential prime of head 1 being a single prime of this head. Tail
corc ac is essential because it is an essential positive prime. Set
ESSENTIAL_TAIL_CORES = {a,c,ac}. The essential necessary implicants are sharped
from ON and put to the solution. After this sharping, the prime implicants of function f are:
b d and b d. The positive core of the first one is 1 and is useless, so that TAIL_CORES =
(bd}. After realization of @ T and a ¢ the set HEADS = {b, d}. Essential maximal impli-
cants b bdanddbdarecreated and sharped from ON. ON = ¢ in step 12, so that the solution
f=ac+ac+b bd +d bd is minimal on the second level. It is also minimal on the third
level, since the only way to realize primes b d and d b with a single group in the third level is
to use the d group bd. Therefore, it is also globally minimal.
Example 5.3. Given is function f(a,b,c,d) = (f*, 2, £, %, /%), where:

=30,7.8,9(10,11,12,13,14,15),  f2=¥(0.4,5,6 (10,11,12,13,14,15))

£ =3(23,69(10,11,12,13,14,15)), f*=3(1,3.5.8(10,11,12,13,14,15)),
£ =3(1,2,4,7(10,11,12,13,14,15)) .
(This is a converter from code "8421" to code "2 out of 57). The essential primes of f! are:
b ¢ d, bed, a. The essential primes of f2 are: € d. b7, bd. The essential primes of f* are
ad, cd, ch. The essential primes of f* are: a d, 3 ¢d, 3 bd. Thcessenualpnmuoff’ are:
bcdabcdbcdbcd Hence the ial i are: for f':
b d, bed, a; for f2: G € d; for £°: ad; for £*: none; for £5: bcd They are put to respective
ESSENTIALA sets of cach function. The negations of their tail factors are: b, ¢, d, a. The
essential positive prime implicants are: (a, ad, bed}. The sum of these two sets:
{a, ad, bcd, b, ¢, d, a}, becomes then the set of essential tail cores. Necessary implicants
from ESSENTIALA are sharped from sets ON (step 7). At this point, ON(f') = ¢, function
fl has the minimal realization, as being a sum of the essential necessary lmpllcants fl=
bt d+ bed +a. In function f2, the only head ining after sh of | prime
@t d from ON(f2) is b. A single essential maximal implicant is & cd. (Since bed is an essen-
tial tail core, implicant b bcd is created for f2 instead of bed). There are no more cubes in
ON(f?), so_the minimal second level solution for d'us function has been found: =
Gcd+ bbed Inh £°, after sharping the y implicant ad, the only
head remaining is c. The essential maximal implicant ¢ bed is generated in step 11 since bed

bound, and
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is the essential tail core: f° = ad + ¢ bcd Similarly, the function f* is entirely created from
essential maximal implicants: f* = a ad +d bed. Function f=bcd+abed +bcd+bcd
is compcsed nf only essential maximal implicants. This way, since all selected essential
are also d only of the ial heads and the 1 tail cores
(step 16), the optimal solution for each separate component function was found in step 12,
without creating the covering table to minimize the third level. Since the function is mul-
tioutput, the is no warranty lhat this solution is globally minimum, and the program iterates.
In one of iterations the maximal impli @ b dis sclected for realization in
functions ' and fz Similarly, the positive implicant ad is found in f> and realized in f1 and
f*. Implicant a ad is found in f* and realized in f! and f*. Now: f! =ad +aad +@ b ¢ d, f*
= b bed +@ b € d, which improves the gate cost by two gates (other functions are as in the
prcvxaus soluuon) The method, similarly to the clessxcal covering/closure algorithms for
p g some non- ] impli for each component function.
(For i the y impli a ad used in f' is a maximal implicant of another
component function, f‘ It is also the product o of maximal implicants a and a ad. The neces-
sary implicant @ b € d of f! is the product of & € d from ' and 3 % d from f2.) Hovever, the
alsgomhm is mnch more efficient than those from [8,9,33,34], since only the "best”, most
ve are g d, so that their number is essentially limited. No cost
unprovemem was brought by the next iterations for this example.

6. CONCLUSIONS

Program TANT-PLD is written in FORTRAN 77 and uses several routines from
TLN-MINI [26]. It has been tried on about 40 Boolean functions of not more than 14 inputs,
and yielded always correct results, For most completely specified functions of less than 10
inputs the solutions were minimum in second level and for functions of less than 6 inputs
about 15% of the solutions were globally optimum. The realized circuits required up to 68%
(on the average 35%) less gates than the corresponding PLAs. The program can consider
trade-offs among the solution cost and the processing speed by using various types of the
source data. For instance: each ON-cube can be a minterm, a disjoint ON-cube {7], a
minimal ON-cube [17,3], a prime cube {22}, a subminimal implicant [22,17], or any other
ON-cube. Similarly the OFF-cubes. By selecting respective types of cubes, the size of the
function that can be handled is sacrificed for the prize of the improved cost of the solution.
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