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ABSTRACT 

The paper describes a program for the minimization of multi-output 
three-level Boolean networks from NAND gates of unlimited fan-in. This 
model suits very well several recently introduced PLD devices, for instance 
the "NAND Foldback Architecture" PLHS501 and PLHS502 chips from Sig- 
netics Corp. In our model the function is multi-output, and it includes don't 
cares. The presented algorithm is fast and creates godquality approximate 
solutions, its efficiency increases with the percentage of don't cares. 

1. THE NAND FOLDBACK PLD ARCHITECTURES 
The PLD devices have been recently introduced that allow to design systems with 

lower component cnunts and higher operating speeds [32]. For most of Boolean functions, 
these new PML (Programmable Macro Logic) architectures can improve gate utilization and 
timing, as compared to the previous generations of PLD devices. The PLHSSOI from Sig- 
netics Corporation provides NAND-folded array design - a sea of NAND gates with a 
multi-point connectivity m h .  The single array allows for the full connectivity of inputs. 
outputs and embedded macro functions, making possible full gate utilization and embedded 
multi-level block designs. It has 72 NAND gates with 72 inputs each, which means that an 
unlimited fan-in can be assumed by the synthesis algorithm. 

The PLHS501 device has 24 dedicated inputs, 8 U0 buffers, 8 EXOR buffers, 4 
Active-Low buffers, and 4 Active-High buffers. It can be observed that in device a 
single-level logic function has a very short path through the device, 18nS max [311. Addi- 
tional levels incur only one NAND foldback delay per level, which is 8 nS. The two-level 
circuit has then 18 + 8 = 26 nS delay only, which is much beaer than in the previous genera- 
lion of devices which stipulated that the logic signal must pass through Yo buffers after one 
or two levels of logic are performed [3 11. 

2. THE TLN NETWORK MODEL 
When one realiies the circuits composed of several connected blocks (as. for instance, 

the itemive circuits) in PLHS5Ol. some inputs to the blocks come directly from the chip's 
inputs (the so called direct inputs). The PLHSSOI has both negative and positive inputs, 
which can be used as the direct inputs. Tbe feedback signals coming from the internal 
NAND gates of PLHSSOI have no negations. Therefore, while designing a single logic block 
to be realized among other blocks in a PLHSSOI device. these signals (like for instance the 
carry signals of an iterative circuit) have to be treated in logic minimization procedure as 
input variables available in only affirmative form [26]. In [I9261 we presented a circuit 
model for incompletely specified Boolean functions where any subset of input variables is 
available in both forms (in particular cases: all variables or none of them). It results from the 
above discussion that the variable availability model from I19.261 is the most general one for 
PLHSSOI. 

The advantage of Three level network (TU') is that the TLN design for function f c a n  
never have more gates than the corresponding PLA. Usually, the TLN design has two 
advantages: it has much less gates and is faster. These are the main reasons why there has 
been recently an increased interest in such networks. Three level networks are important 
from the speed optimization point of view, since three levels is the minimum number of logic 
levels necessary to realize an arbitrary logic function from inclusive gates (even PLA has 
three levels, including inverters). The algorithms for hazardless synthesis of TLN networks 
which have been also proposed E251 makes them useful for the design of asynchronous state 
machines. Moreover. one can easily expand this model to take into account the "fast" (arriv- 
ing quickly) and "slow" (arriving late) combinational input signals of a state machine. by 
assigning the slow inputs to the second level of the TLN circuit [251. In the TLN model, the 
one-level (such as OR of negated variables), and two-level functions (such as a posi~ve 
unate function) need only one or two levels of logic, respectively. which makes their realiza- 
tions faster than in PLAs. 

TLN networks [261 are the generalizations of the Three level And-Not Network with 
True inpuIs (TANT) of Mccluskey and Gimpel [15.91. Several algorithms to minimize 
TANT networks have been published [4,5,15.14,11,33,341, and some algorithms have been 
implemented as computer programs [9.12.8,18,26]. A closely related topic of negative gate 
network minimization is presented in [19,20]. 

Other advantage of TLN networks is that they can be designed in VLSI: using one, 
two or three NAND-arrays (some of them possibly folkd). or using a NAND array and a 
standard NANDMAND PLA-lie pair of arrays. Each NAND a m y  is of better density than 
the NANDMAND array of the two-level designs. The routing among the arrays is 
simpli6ed. In the case of TANT networks (as well as for the "single-polarity'' TLN networks 
where each variable is available as either positive or complemented but not in both [241), the 
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number of input columns of an array is reduced by half with respect to a PLA (only one 
column exists for each input variable). Other advantage of such layout style is the ease of 
adding EXOR logic to the NAND array for improved testability. 

3. BASIC NOTIONS OF APPROXIMATE MULTIOUTPUT TANT MINIMIZATION 
The Algorithm 5.1, presented in section 5 of this paper deals with a multioutput, 

incompletely speci6ed function in which all input variables are available in affirmative @si- 
tive) form. The cost to be minimized is the gate cost. This cost definition speeds-up this 
algorithm with respect to the algorithms which use gatehnput costs [26241 and it is sufficient 
for the fan-in model of PLHS501-like circuiu. The improved speed of this algorithm with 
respect to the previous algorithms was achieved due to the assumption of unlimited fan-in of 
all NAND gates, and due to the speed of modem twdevel logic synthesizers. 

The fast approximate algorithm for the general, all-variable availability model is quite 
complex. Its basic nations and partial algorithms have been presented in [26,19,201, and will 
appear in the forthcoming papers [23,24,23. Therefore, because of the limited space, only 
the case of the multi-output incompletely speci6ed functions with only positive variables 
available will be discussed in this paper. One of the methods to expand the model presented 
here is to innoduce a new variable symbol for a negation of each variable available in the 
complemented form [34]. In the most difficult case when all variables are available in both 
forms, this method doubles the number of input variables, but does not quire otherwise any 
other modifications to the algorithms presented in the sequel. Two othex methods for the 
general case are presented in [26,23,24]: the complex but more efficienL and the exact 
method. 

The source data, multioutput Boolean functionf= (f', . . . .f ,..., F) is given as a mul- 
twurput ON array (specifying ON-cubes of all single component (output) fwtiomf. i = l, 
.... m), and a multioutput OFF array (specifying OFF-cubes of all these functions). Each 
cube has n+m bits, the 6rst n bits (b. E CO, 1, X.  E]) is the input parr. the last m bitr 
(bi E {O, 1)) is the oufputparl 181. By ONW) we will denote the set of all such cubes j for 
which ONljp+i] = 1. Similar notation will be used for other sets of multioutput cubes and 
subfunctions. The cubes need not to be the mintems. The program assumes that all no( 
"p":ed values are don't cares. Such representation has advantages for strongly unspecified 
functlons. 

4. CATEGORIES OF IMPLICANTS FOR TANT NETWORK MINIMIZATION 
The following example will illustrate how TANT optimization leads to network reduc- 

tion. 
Example 4.1. The function f = C(O,1,2,4,5,6,12,14) can be minimized as the following 
Boolean expression: f =  ii C + ii 2 + b d .  Its NAND-based PLA realization (so called 
PLA-expressizo ) has gate cost 7. The corresponding optimal expression for TANT net- 
work i s f=  ii cd + b d ,  which has one gate less than the previous realization. 

One can observe from the above example. that in TANT networks the 6rst level real- 
izes a logical sum, the second realizes a product and the third one the negation of the vari- 
ables' product. TANT network minimization problem consists of finding the Boolean 
expression that minimizes the total cost. It means that the synthesis method should minimize 
simultaneously the second and third levels. 
Definition 4.1. The positive core (core, for short) of a product of literals is the product of 
those literals which are positive. 
Example 43. The positive core of ab? dis  ob. 
The core is a cube, so that dehnitions of c& calculus operatiom [1,2,6,10,27281, such BJ 
sharp (#), absorpfion. and intersection are applicable to iL  
Definition 4.2. _A permissible expression is a Boolean expression of form 
P = H . . . T, where both H and Ti are positive cores. H_is called the head of per- 
missible expression and each Ti is called a tail core while each Ti is called a tail factor. 
Definition 4.3. A permissible lmplicant (PP-lmplicant) of function f is a permissible 
expression which impliesf (i.e. covers a gbset of ON cubes ofn. 
Example 43. A Boolean express@ b-d is $e p r i E  -+licanr (prime, for short) of the 
function from Example 4.1. and b d, b bd, b ad F. b ad cd are some of PP-implicants of this 
function. 
Definition 4.4. A head of a PP-implicant of function f i s  called the second level group. A 
tail core of a PP-implicant is called the third level group. 
Example 4.4. For the TANT network of the function ffrom Example 4.1. products b. and 1 
are the second level g ~ ~ u p s ,  while products a, b. and cd are the third level groups. 1 is the 
head of the PP-implicant 
Delinition 43. A permissible realization for function f is the inclusive sum of the set of 
PP-implicants which cover all ON cubes of the function. An optimal permissible realiza- 
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tlon for function f, denoted by OPR (f), is such a permissible realization that its comespond- 
ing TANT network has the minimum total cost. 
Definition 4.6. A prime permissible implicant, pp,-implicant for short, is a permissible 
impticant (hac 
~ 

- 

The set of allppy implicants is denoted by PPp 
Example 45. _For gnctign ffroz Example 4.1: 
PPL= fis Ed, ii cd,b d,LSicd, b&&, 
b bd, b ab cd. L bed, b abd cd, b ad bed, b abd bcd) . 
Definition 4.7. A principal PP-implicant, pc,-implicant for short, is such a pp,-implicant 
that its tail cores do not contain variables from its head. The set of all pc,-implicants is 
denoted by PCf. 
Example 4.6. _For finctio_nffroE Example 4.1: 
PCf = [ii?, iid. a cd, b d. b Si cd, b ad cd). 
Definition 4.8. A maximal pc,-implieant, mp,-implicant for short, is such a pc,-implicant 
that is not included in other pc,-impticants. The set of all mp im licants is denoted by Mp 
The maximal implieant of a multioutput function is theLa.&al implicant of its com- 
ponent function f, or the maximal implicant of a product of component functions. 
Theorem 4.1. The tail cores of a mp,-implicant are included in all the tail cores Of pcy 
impticants included in this mp,-implicant. 
Example 4.7. For function f from Example 4 & 4 =  (2 cd, b 2 cd] .  
The tail cores ad and cd of a mprimplicant b ad cd ace included in the91  core d of the pC,- 
impticant b 2. They are also included in the tail cores a and cd of b Si cd. 
Definition 4.9. An augmented pp,-implieant, ap,-implicant for short, is such a pp,- 
implicant that it is not a pc,- implicant. The set of all ap,-implicants is denoted by APp 
Example 4.8. For function ffrom Example 4 2  - 
APf = (b 2, b 2, b Z g, b ab bcd. b abd cd, b ad b%, b a x  bcd). 
Definition 4.10. A necgsary ap,-implieant, mrimplicant for short, is such a ap,- 
implicant that all of its tad factors can be shared by other pp,-implicants of a different head. 
The set of all nu,- implicants is denoted by NAP An unnecessary ap,-implicant is the a& 
implicant which is not an na,-implicant. It is called an una,-implicant 
Theorem 4.2. If the una,-implicant is not selected to an exact OPR(f) then at least one 
optimal solution is not lost. 
Example 4.9. Forfunctionffrom Example4.1:NAf=@. 
Definition 4.11. A necessary pp,-implieant, np,-implieant for short, is such a pp,- 
implicant that is cat a una,-implicant. The set of all np,-implicants is denoted by Np 
FromDefinitions4.6,4.7.4.9.4.10and4.11onecanconcludethatNf=PC,y NAf. 
Example 4.10. For function ffrom Example 4.1: NI = PCp - 
The next theorem results directly from the Boolean Rule: A B = A  E and the delinitions of 
pc,-implicants and nu,-implicants. 
Tbeorem 4.3. Every ap,-implicant can be generated from a PP-implicant by addition of cer- 
tain variables contained in its head to a subset of its tail cores. 
Theorem 4.4. The positive cores of all prime impticants of function fare sufficient as the 
heads of the pp,-implicants. 
Example 4.11. The prime implicants of function /from Example 4.1 are: (t 7, Z 2, b 2). 
The positive cores of these implicants are (1, b) which are the heads of the pp,-implicants 
from Example 4.5. 
Theorem 4.5. The positive cores of all prime implicants of function 7 (the complement of 
function fi are sufficient as tail c m  of the mp,- implicants off. 
Exgnple 4.12. Prime implicants of the complement of function f from Example 4.1 are 
[a b, ad, cd). The positive cores of these implicants are [a. ad. cd) which are tail cores of 
the mp,-implicanrs from Example 4.7. 
Definition 4.12. An essential prime implieant of single-output function f is the prime that 
is not entirely covered by other primes off. An essential maximal implieant of a com- 
ponent function f is the maximal impticant that is not entirely covered by other maximal 
impticants of this function. An essential implicant of a multioutput function f is the essen- 
tial implicant of at least one of its component functionsf. 
Definition 4.13. A positive implieant o f f  is the product of positive variables that is an 
implicant off. A positive prime implieant is the prime implicant that is composed of only 
positive variables. An essential positive implicant is the essential prime implicant that is a 
positive implicant as well. 
Definition 4.14. An essential tail core is the single-variable tail core from an essential max- 
imal implicant of positive core 1. 
Definition 4.15. An essential necessary implieant is either the essential maximal implicant 
whose all tail cores are essential, or the positive essential implicant. 

Let us observe that in order to minimize the second level of TANT network the essen- 
tial maximal impticants should be selected. First an essential prime is found and in the next 
phase Several implicants are generated with the positive core of this implicant as their head, 
and one or more of them are included to a solutioo. Then, in a sense, only its head is essen- 
tial. We will call it an essential bead. On the conbnry, the essential necessary implicant of 
a single-output function or component function f should be directly selected to the solution 
because no other better necessary implicant can be created from i t  Let us also observe that, 
in function f, an essential positive implicant of a component function f can be useful as a 
tail core or an impticant in other component function f J  of the same functionf, j # i. There- 
fore, an already selected group can be used free for other applications (this can lead to solu- 
tions of nonminimal input cost but this is not a concern of OUT circuit model). 
When one wants to find the minimum solution for the multioutput function, maximal impli- 
cants must be generated that are maximal not only for each individual f but also for pro- 
ducts of several f (so-called multioutput maximal implieants). This is done by finding 

is not included in a prime implicant, 
if a rail factor is removed from it then the resulting expression is no longer a PP- 
implicant. 

- - 

products of maximal implicants of the same head generated for each y. If , for instance, 
there are maximal impticants ml , m2. and m3 in functions f' , f2, and f3. respectively, then 
one creates products: m l  & m2. m l  & m3, m2  & m3, m l  & mz & m3. These multioutput 
maximal implicants are used for realization in the second phase of the algorithm. 
Definition 4.16. A free tail core of f  is one that has been,already selected as a positive 
implicant or as a tail core in one of the component functionsf. 
Let us observe that free tail cores don't increase the solution cost when taken as tail cores of 
new implicants selected to the cover. 
By "sharping" function g from function f we understand the result of operation f # g. 
Definition 4.17. A secondary essential prime is the prime that becomes essential afm 
sharping from set ON of an essential or secondary essential prime. A secondary essential 
maximal implicant is the maximal implicant that becomes essential after sharping from set 
ON of an essential or secondary essential maximal implicant. 
Definition 4.18. A minimal minterm of cube HEAD is the cube obtained from HEAD by 
replacing all its bits X by bits 0. 
Definition 4.19. The simple extension HEAD1 of core HEAD in f is the core that ori- 
ginates from HEAD by the removal of a single variable, under condition that the minimal 
mintenn of HEAD1 is not included in OFFV). 
(A core of k literals has from 0 U, k simple extensions). 
Definition 4.20. The extension of core HEAD is the simple extension or the extension of a 
simple extension. A maximum extension is the extension that has no further simple exten- 
sion. 
AI1 implicants and tail cores are called subfunctions 

5. THE ALGORITHM FOR FINDING QUASIMINIMAL TANT SOLUTION 
In order to find the optimum OPR(f) from the set of the np,-implicants. the covering 

problem with changing costs is used in [%I. Most other apprmches use variants of the 
covering-closure model [33,34,91. Since both those approaches are memory and time con- 
suming for TLN networks, in this paper we will present a heuristic seatch algorithm that 
does not generate all the np,-implicants, and solves the coveringlclosun problem only 
approximately and without creating the coveringlclosure table. It can, however, prove 
optimality for a class of Boolean functions that essentially includes the class of non-cyclic 
functions 1281. F e  basic idea of this algorithm is to find the essential and 'good" subfunc- 
tions of some f and next use them, or their tail factom, in all component functions f in 
which they are useful. 

Theorem 5.1. If a single-output function is wmposed of only essential implicants them all 
its maximal implicants are essential as well. 
The opposite is not me. as exemplified by the function f= C(1,3,6,7,8.9,12,14). It has no 
essential primes since it is a cyclic function It includes, however, three essential maximal 
implicants: d a acd. bc a, and a a E, which together cmstitute the minimum secona 
level cover of f. The above function is cyclic, but not TANT-cyclic The function 
f =~(0,1,5.6,7,10,14,1~ isbothcyclic andTANT-cyclic. 
Theorem 5.2. Algorithm 5.1 finds the minimum seeond level solution for each single- 
output function that is composed from essential and secondary essential maximal implicants 
only. If additionally the tail cores are all essential then the solution is globally minimum. 
Even if the function has a TANT-cyclic component, the minimal second-level realization of 
the not TANT-cyclic component is found. 
The minimum second level solution is one that has the minimum possible number of gates in 
the second level. It was found practically to be very close to the global minimum for many 
single-output functions of less than 10 variables 15241. 
It results from these theorems that without solving the covering problem the minimal second 
level solutions can be found for a wider class of functions in the TANT model than in the 
PLA model. 
Algorithm 5.1. 
Minimization of a multioutput TANT network. 

The following theorems can be proven. 

1. 

2. 

3. 
4. 

5. 

6. 

Using sets of cubes ON and OFF, generate the set ESSENTIAL of all essential prime 
cubes off(the efficient algorithm from [221 is used that generates the essential primes 
without generating the set of primes offi. 
Using sets of cubes ON, OFF, and ESSENTIAL, generate the set ESSENTIAL2 of all 
secondary essential prime cubes off (the efficient algorithm from 1221 is used that 
generates the secondary essential primes without generating all primes). 
ESSENTIAL :=ESSENTIAL U ESSENTIALZ. ON1 := ON. 
Create set ESSENTIAL3 by partitioning set ESSENTIAL into groups of essential 
primes, by assigning to each group the essential primes with the same positive core. 
Make set ESSENTIAL4 of essential necessary impticants by selecting from set 
ESSENTIAL3 the positive implicants and the implicant of positive core 1 being the 
single element of a group. 
Realization of essential tail cores and FREE-TAIL-CORES. 
A. ESSENTIAL-TAIL-CORES := [ the tail c m  being negations of the tail fac- 

tors from ESSENTIAL4 ) . 
FREE-TAL-CORES := [ set of those implicants from ESSENTIAL3 that are 
positive 1. 

B. For each tail core G from ESSENTIAL-TAIL-CORES U 
FREE-TAIL-CORES, and all f, i = 1 ,.... m, do: 
a) if G is an implicant off then e it as an implicant off (by the reali- 

zation of implicant G in functionf one means: 
SOLUTIONy') := SOLIJTION(r) U G, ONl(f) := ONV) # G). 
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7. 

a. 

9. 
10. 
11. 

12. 

13. 

14. 
15. 

16. 

(SOLUTIONY) is the set of impticants selected for component function 
f. SOLUTION = (SOLUTION(fl). ..., SOLUTIONV). 
if for a component function f there is: ON l(f)  8 a and O F F ( f )  a = 
I$ then realize the entiref as E .  (steps a), b) can be performed since these 
tail cores G do not add gate cost when used). 

Realization of essential necessary implicants. Sharp the essential necessary implicants 
found in step 5 from the function and put them to the solution sets off in which they 
exist: 

Create the set ESSENTIAL-HEADS from the positive cores of all the groups from the 

ONZ := OFF. OFFZ := ONI. Find a single SOP of function 3 
Find set TALCORES of positive cores of the primes from this SOP. 
Realization ofessential " a 1  implicants. 
For each HEAD from ESSENTIAL-HEADS do: 
A. 

h) 

ON1 := ON1 # ESSENTIAL4, SOLUTION := ESSENTIALA. 

setESSENTIAL3 - ESSENTIAL4. 

for each component function f for which there is an implicant of head HEAD 
do: 
a) creare. a maximal implicant MAX(f) of head HEAD. using the algorithm 

from [321. This algorithm selects tail cores from the sets TAILCORES. 
ESSENTIAL-TAIL-CORES. and FREE-TAIL-CORES. in this order of 
priority. 
Mark in SOLUTION3, the component functions f in which MAX (f) i s  
an implicanc MAX (f) n ONlY) # 0 and MAX (f) n OFF(f) 
= 0. 

c) Sharp MAX(f) from all ONl(f') sets of all component functions f' in 
which it is an implicant. 

d) FREE-TAIL-CORES1 := [tail cores from MAXV)). 
e) realize the cores from FREE-TAIL-CORES 1 analogously as the essential 

tail cores were realized in step 6B. 
r) FREE-TAIL-CORES := FREE-TAIL-CORES U 

FREE-TAIL-CORES1. 

b) 

Checking the solution. If ON1 = 0 then do: 
A. 

B. gotol6. 
Realization of secondary essential " m o l  implicants. 
A. 

SOLUTION3 := SOLUTION U ESSENTIAL-MAX is the minimal second- 
level solution. 

Using the algorithm from [241 and sets ON1. OFF create the set ESSENTIAL5 
of secondary essential maximal impticants. New tail factors are realized as in 
11A c), d), e). 

SOLUTION2 := SOLUTION U ESSENTIALS. 
Checking the solution. If ON1 = 0 then do: 

B. ON1 := ON1 #ESSENTIALS, 

C. 

a) SOLUTION3 := SOLUTION:! is the minimal second-level solution, 
b) go to 16. 

else ADDITIONAL-TAIL-CORES := 0. 
ON3 := ON1. SOLUTION3 := 0 ; cyclic part of solution 
Hewisn'c Search ofmarim01 implicants. 
A. Find in ON3 the cube cube, that has firstly the minimum number of bits "1" in 

the input part of the cube and secondly the maximum number of bits "1" in the 
Output part of the cube. If there are many such cubes, pick randomly any of 
them. 

B. FinditspositivecoreHEAD. HEADS := [HEAD). 
C. For each component function f in which the minimal minterm 

Find the set HEADSV) of all heads being the maximum extensions of 
HEAD. For each of those heads, mark the functionsf in which it exist 

MINIMALWAD) for the HEAD is not included in OFF(f). do: 
a) 

b) HEADS :=HEADS U HEADS@'). 
D. For all heads HEADl from set HEADS do: 

a) Generate the maximal implicant MAX of head HEADl and negations of 
some tail cores as the tail factors [Zq: the tail cores from sets 
ESSENTIAL-TAIL-CORES, and FREE-TAIL-CORES have the priority 
in the tail core selection process. the cores from TAIL-CORES. and 
ADDITIONAL-TAIL-CORES are selected in the next order. 

Execute for MAX. ON3, v d  SOLUTION3 the algorithm desaibed in 
steps 11A b) -e) for MAX(f), ONI. and SOLUTION. 

b) SOLUTION3 := SOLUTION3 U MAX. 

c) 

If ON3 # 0 then go to A. E. 
SOLUTION4 := SOLUTION2 U SOLUTION3. 
If the function is single-output and all implicants in set SOLUTION4 have only the 
essential heads in the second level and the essential tail cores and positive essential 
implicants as the thud level groups then print SOLUTION4 as the globally minimal 
one, and terminate. 

17. Improvement of the third level for the second level cover realized in steps 6 - IS. 
A. For each maximal implicant from SOLUTION4 create a set of possible tail 

cores from TAIL-CORES with which this implicant can be. realized. These are 
the tail cores of the implicants f" SOLUTION3, and theii augmented cores. 
Create a covering table with maximal implicants as columns and tail cores as 
rows. 
Solve the covering problem to minimize the number of tail com. Give priority 
to the cores in this order: ESSEIvTAL-TAIL-CORES, FREE-TAIL-CORES, 
ADDITIONAL-TAIL-CORES. Additionally, the evaluation of the minimum 
bound on the third level is found at this stage [24,191. 

Iterative improvement of the TM-cyc l ic  part of the solution without reshaping the 
ON and OFF sets. 
A. ADDITIONAL-TAIL-CORES := [ set of tail cores created from the rated cores 

of the "best" impticants from all solutions found until now. and the cores being 
their intersections 1. (For instance, cores abcd and acdc produce a new core 
acd). 
Repeat three times the steps 14 - 1 8 k  In step 15 Ca), the multioutput "al 
implicants are created, as explained in section 4. Also. instead of the maximum 
extensions of heads, the extensions that minimize the "predicted wst" [%I of 
the created necessary implicants are faken (the search involves now not only the 
maximal implicants but also the necessary implicants). 

B. 

C. 

18. 

B. 

19. 

20. 

If no improvement of solution cost was achieved in step 18 
then print the SOLUTION4. the global minimum bound, and terminate. 

Ilerative improvement of the solutwn with reshaping the ON and OFF sets and recal- 
culating implicants. 
A. 
B. 

reshape cubes in sets ON and OFF, 
ADDITIONAL-TAIL-CORES := ADDITIOb+.-TAIL-CORES U [ set of 
positive cores of prime implicanu of a SOP off) .  
ON3 := ON, SOLUTION2 := 0. SOLUTION3 := 0. 
Execute steps 14-19, using in step 14 the set ON instead of the set ONI. 
If no improvement of solution cost was achieved in step D 
then print the SOLUTION4, the global minimum bound, and terminate. 
Else go to 20. 

C. 
D. 
E. 

Example 5.1. For function f= ~(0,2.4,5.6,7,12,13.14) the essential primes of core b are 
b C, b 7i and b zLThe essential primes of core 1 is ii 2. After sharping the essential neces- 
sary implicant ii d (it is necessary as being a single essential prime of head 1). ?e only head 
remaining is b. Head b ove&aps the positive core acd of prime implicant acd Of f The essen- 
tial maximal implicant b acd is created (the implicants like b C, b E, and b d of head b are 
not maximal). After s%ing Lfrom set ON, the set ON becomes empty. Therefore, the. 
solution obtained, f = E d + b acd, has the minimum number of gates in the second level 
The tail cores a, dare essential. since they come from an essential prime implicant of head 1. 
The tail core acd is also essential, since at least one tail core. other than c and d, is needed to 
realize the. essential prime E, which is included in the maximal implicant of head b. The 
third level cover is then minimal as well. The solution is minimal on both levels, and since 
the function is single-output it is globally minimal. 
Example 5.2. For function f = ~(0.1,3,4,5.6.9,10.11,12,14.15), theessential primes are: 
Z E, a c. b 2, d b. The essential necessary implicanu are: E ?and a c. Tail cores a and c are 
essential as coming from an essential prime of head 1 being a single prime of this head. Tail 
core ac is essential because it is an essential positive prime. Set 
ESSENTIAL-TAIL-CORES = [a,c.ac).  The essential necessary implicants are s h q e d  
from ON and put to the solution. After this sharping, the prime impticants of function f are: 
b d and b d.  The positive core of the first one is 1 and is useless, so that TAIL-CORES = 
[bd)  . After reali5tion of ii C and a c the set HEADS = [ b ,  d )  . Essential maximal impli- 
cants b bd and d bcare created and sharped from ON. ON = 0 in step 12, so that the solution 
f =  Z T + a  c + b  b d + d  bd is minimal on @e second level. It is also minimal on the thiid 
level, since the only way to realize primes b d and d b with a single group in the third level is 
to use the augmented group bd. Therefore. it is also globally minimal. 
Example 5.3. Given is function f(a,b.c.d) =U', f'. f 3 , p . f ) ,  where: 
f l =  c(0,7,a,9 ~io,i i , iz, i3,i4,1.m, p =1(0,4,5,6 ( 1 o , i 1 , i ~ ~ i 3 , i 4 , 1 ~ ) ,  
f3 = z(2.3.6.9 (10,11,12.13,14,15)), p =1(1,3,5,8 (10,11,12,13.14,15)), 
f5 = C(1,2,4,7 (10.11.12,13.14.15)). 
m i s  is a converter from code "8421" to code "2 out of 5"). The essential primes off are: 
b T 2, bcd. a.  The essential primes of fz are: ii T 2, b?, b;i The essential primes of f3 are: 
ad. cd. cb. The essential primes of p are: a a ii Cd. 7i &f, The essential primes off are: 
b T 2, ii b C  d. bcd. bc 2. Hence the essential neceSSary implicants are: for f': 
b C  2, bcd, a; for?: ii C 2; forf3: ad, forf': none; forf: bcd. They are put to respective 
ESSENTIAL4 sets of each function. The negations of their tail f a c m  are: b,  c, d. a. The 
essential positive prime implicants are: [a, ad, bcd).  The sum of rhese two sets: 
[ a ,  ad, bcd. b,  c, d, a ) ,  becomes then the set of essenbl  tail cores. Necessary implicanu 
from ESSENTIAL4 are sharped from sets ON (step 7). At this point, ON(fl) = 0, function 
1' h a s  the minimal realization, as being a sum of the essential necessary implicants: f' = 
b C d + bcd + a. In function f'. the only head remaining after sharping of essential prime 
Z C 2 from ON(f*) is b. A single essential maximal implicant is b 2. (Since bcd is an essen- 
tial rail core, implicant b bcd is created for jz instead of bcd). There are no more cubes in 
ON(f'), so the minimal a o n d  level solution for this function has been found fz = 
ii C 2 + b bcd. In function f3. after sharping the essentiinecessary implicant ad, the only 
head remaining is c. The essential maximal implicant c bcd is generated in step 11 since bed 
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is the essential tail core: f 3  = ad + c bcd. Similarly, the function p is entirely createdfrofi 
essential maximal imp1icants:y = a  2 + d  bcd. Function f s  = b F i  +ab Fd +bed + b c d 
is composed of only essential maximal implicants. This way, since all selected essential 
maximal implicants are also composed only of the essential heads and the essential tail cores 
(step 16). the optimal solution for each s e e  component function was found in step 12, 
without creating the covering table to minimize the third level. Since the function is mul- 
tioutput. the is no warranty that this solution is globally minim-um, and the program iterates. 
In one of iterations the multioutput maximal implicant Z b C d is selected for realization in 
functionsf' andf'. Similarly, the positive implicant ad is found in f 3  and realized in f '  and 
f'. 1119lic~~o_~isfoundinpandrealizedinf1andp.Now: f 1 = a d + ~ + Z 6 i ? ~ . f 2  
= b bcd + a  b c d.  which improves the gate cost by two gates (other functions are as in the 
previous solution). The method, similarly to the dassical covering/closure algorithms for 
multioutput functions, generates some non-maximal implicants for each component function. 
For instance, the necessary implicant a ;;i used in f '  is a maximal implicant of another 
companent functi0n.f. It is also the product of maximal implicants a and a 2. The rims- 

saryimplicantB6Cdoff' istheproductof6Fzfromf'andZCzfromf.) Hovever-the 
alsgorithm is much more efficient than those from [89,33,341, since only the "best", most 
prospective implicants are generated, so that their number is essentially limited. No cost 
improvement was brought by the next iterations for this example. 

6. CONCLUSIONS 
Program TANT-PLD is written in FORTRAN 77 and uses several routines f" 

TLN-MINI [261. It has been hied on about 40 Boolean functions of not more than 14 inputs, 
and yielded always correct results. For most completely specdied functions of less than 10 
inputs the solutions were minimum in second level and for functions of less than 6 inputs 
about 15% of the solutions were globally optimum. The realized circuits required up to 68% 
(on the average 35%) less gates lhan the corresponding PLAs. The pro- can consider 
trade-offs among the solution cost and the processing speed by using various types of the 
source data For instance: each ON-cube can be a mintenn, a disjoint ON-cube [7], a 
minimal ON-cube [17.31, a prime cube [22J, a subminimal implicant [22,171, or any other 
ON-cube. Similarly the OFF-cubes. By selecting respective types of cubes, the size of the 
function that can be handled is sacrificed for the prize of the improved cost of the solution. 
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